
 WikiWiki

s6

s6 is a process supervision suite that also provides tools for service management
(s6-rc) and system initialization/shutdown (s6-linux-init).

Contents
General overview
Installation
 Installation of services
Programs
Files
Basic usage
Updating bundle contents
Source directory structure
See also

General overview
s6 software is all designed to be very modular and can be mixed and matched with other
things. However, s6 software is also designed to work well with one another. In Artix, we
take full advantage of what s6 offers and use all of the available tools to provide an
/sbin/init, PID1, process supervisor suite, and service manager for users.

s6-linux-init is what actually initiates your system. It mounts a tmpfs onto /run and copies
the /etc/s6/current/run-image directory into /run . /sbin/init then execs into the s6-svscan

program (provided by s6) which functions as your PID1 for the lifetime of the machine.
Once this is done, the stage 1 part of init is finished. In addition to being PID1, s6-svscan

is also the root of your process supervision tree. It monitors every service found and
appropriately spawns an s6-supervise for every service.

Additionally, during bootup the rc.init script in the /etc/s6/current/scripts directory gets
executed. s6 itself does not do service management, but only process supervision. In
rc.init , the actual service manager, s6-rc is started. From that point, we launch the

default runlevel defined by s6-rc and begin the desired services.

https://wiki.artixlinux.org
https://wiki.artixlinux.org/Site/AllRecentChanges

On shutdown, every service in s6-rc is brought down, followed by killing all s6-supervise

processes and other processes, then unmounting everything, and finally killing
s6-svscan .

Note: s6-linux-init on artix is compiled with the option to print messages to /dev/console .
By default, this is tty1. You can change /dev/console to another location using a kernel
parameter (see your bootloader's configuration) if you'd like.

Recovery: s6-linux-init always provides a getty service on tty12 that you can use for
recovery purposes (in case s6-rc crashes, etc.). As long as the system correctly boots, it
will be there.

Installation
Install the s6-base package.

Installation of services
s6 service packages are named package_name-s6 and, when installed, will be available
in /etc/s6/sv .

Programs
The s6 software suite comes with many different binaries, but in general you only need
to directly interact with a small subset of them. Below are some of the more interesting
programs.

s6-db-reload - a helper script for updating and reloading the s6-rc database
s6-rc - the main program for controlling and managing services
s6-rc-db - a tool for analyzing a compiled service database
s6-svc - a tool to directly send commands to an s6-supervise process
s6-svstat - a tool for checking the current states of a process monitored by s6-

supervise (an s6-rc longrun)

Files
Most of the files associated with the s6 software packages are installed in the /etc/s6

directory.

/etc/s6/current - the base directory for s6-linux-init
/etc/s6/current/scripts - various startup/shutdown scripts executed by s6-linux-init
/etc/s6/config - conf files for specific s6-rc services
/etc/s6/rc - where compiled databases are stored; the current live database is always

symlinked to /etc/s6/rc/compiled

/etc/s6/rc.local - file for executing arbitrary shell commands on bootup (any shell
scripts in /etc/local.d suffixed with *.start are executed on bootup and those with
*.stop are executed on shutdown)
/etc/s6/skel - contains the default startup/shutdown scripts that come with artix linux
/etc/s6/sv - default directory for script packages from Artix
/etc/s6/adminsv - directory for custom user services as well as script packages from

Artix that allow for editing
/etc/s6/fallsv - emergency fallback that is used if the s6-rc-compile of sv and adminsv

fails

Basic usage
A key concept to using s6-rc is to understand the notion of "bundles." You can take their
namesake literally. A bundle in s6-rc is any collection of services, oneshots, and even
other bundles. These are quite similar to openrc's runlevels and are used in similar ways
in Artix. The package, s6-scripts , which contains essential startup oneshots and
daemons for an Artix system internally uses many different bundles for convenience, but
for users the main bundle they should concern themselves with is the default bundle.
This is started by s6-rc and in general users will want to add their services to this bundle.

Note: There is a bundle within default called boot . This is a collection of
startup/shutdown boot oneshots and daemons deemed essential for a working system.
These are mostly provided by the s6-scripts package with some optional dependencies
that install themselves into the appropriate directory.

Also note that s6-rc manages dependencies so it is not necessary to manually start all
needed dependencies. When service foo is started, all of its dependencies (if they are
not already up) are automatically started. Here are some handy commands.

Stop a service/bundle # s6-rc -d change service_name

Start a service/bundle # s6-rc -u change service_name

Restart a service (only works with s6-rc longruns) # s6-svc -r /run/service/service_name

List all active services # s6-rc -a list

List all services/bundles in the database # s6-rc-db list all

Check the status of an s6-rc longrun # s6-svstat /run/service/service_name

Updating bundle contents
Within every directory of a bundle, there is a contents.d folder which contains empty files
named after services that are within the bundle. So in order to add services to a bundle,
you just touch empty files named after the services in the directory. To add services to
the default bundle (so it starts on boot), you would do:

 # touch /etc/s6/adminsv/default/contents.d/service1
 # touch /etc/s6/adminsv/default/contents.d/service2
 # s6-db-reload

The s6-db-reload command is a symlink to the hook Artix uses to handle s6-rc database
upgrades. It is executed whenever any *-s6 package in Artix is installed to ensure
services are immediately available in the new database. This consists of 3 main steps.
First, it compiles a new database with a unique name generated by the date command
with s6-rc-compile . Then, it executes s6-rc-update to update the live database to the
newly compiled database. Finally, it atomically updates the symlink to /etc/s6/rc/compiled

so on the next boot, the system executes the newest database.

Source directory structure
s6-rc has three types of services: longrun, oneshot, and bundle. Most *-s6 packages are
longrun services (AKA daemons). Oneshot services do exactly what their name implies:
execute once on bootup and optionally on shutdown. Bundles are simply a collection of
longruns, oneshots, and even other bundles. Every source directory will have a
mandatory type file that contains a single line defining what type the service is. Longrun
services must contain a file called run , oneshots must contain a file called up , and
bundles contain a subdirectory named contents.d .

In Artix, a typical service script comes with two different parts: the daemon itself and the
logger daemon that uses the s6-log tool. The scripts for the actual service foo will be
installed in the /etc/s6/sv directory as foo-srv . Additionally, a small logger daemon for
that specific service will be installed in foo-log . foo-log will catch any output from foo-srv

and save it in /var/log/foo directory. The s6-log logger daemon is run as the s6log user
and group. To give a user permission to view logs, just add him to the s6log group.
s6-log does log rotation for you and has many different configurable options.

When interacting with s6-rc, the name of foo doesn't change (i.e. you still do
s6-rc -u change foo). This starts both foo-srv and foo-log and handles any of the

dependencies for you.

This is a tree of a longrun directory structure (aka /etc/s6/sv/foo-srv). In many scripts,
only producer-for , type , and run exist.

 foo-srv
 ├── dependencies.d (optional subdir containing names of dependencies)
 ├── notification-fd (optional)
 ├── producer-for (required for foo-log)
 ├── run

 └── type

A tree for a logger daemon longrun (aka /etc/s6/sv/foo-log) looks like this.

 foo-log
 ├── consumer-for
 ├── notification-fd
 ├── pipeline-line
 ├── run
 └── type

See also
https://skarnet.org/software/s6/ - Official s6 documentation
https://skarnet.org/software/s6-rc/ - Official s6-rc documentation
https://skarnet.org/software/s6-linux-init/ - Official s6-linux-init documentation

Edit - History - Print - Recent Changes - Search
Page last modified on October 04, 2024, at 04:30 PM

https://skarnet.org/software/s6/
https://skarnet.org/software/s6-rc/
https://skarnet.org/software/s6-linux-init/
https://wiki.artixlinux.org/Main/S6?action=edit
https://wiki.artixlinux.org/Main/S6?action=diff
https://wiki.artixlinux.org/Main/S6?action=print
https://wiki.artixlinux.org/Main/RecentChanges
https://wiki.artixlinux.org/Site/Search

	s6
	General overview
	Installation
	Installation of services

	Programs
	Files
	Basic usage
	Updating bundle contents
	Source directory structure
	See also

